長(zhǎng)江有色金屬網(wǎng) > 有色知識(shí) > 太陽(yáng)能電池分類

太陽(yáng)能電池分類

   來(lái)源:

硅太陽(yáng)能電池分為單晶硅太陽(yáng)能電池、多晶硅薄膜太陽(yáng)能電池和非晶硅薄膜太陽(yáng)能電池三種。

雖然太陽(yáng)能電池在生活中十分常見,但大家對(duì)與太陽(yáng)能電池缺并非十分了解。

1.硅太陽(yáng)能電池

硅太陽(yáng)能電池分為單晶硅太陽(yáng)能電池、多晶硅薄膜太陽(yáng)能電池和非晶硅薄膜太陽(yáng)能電池三種。

(1)單晶硅太陽(yáng)能電池

目前單晶硅太陽(yáng)能電池的光電轉(zhuǎn)換效率為15%左右,最高的達(dá)到24%,這是目前所有種類的太陽(yáng)能電池中光電轉(zhuǎn)換效率最高的,,技術(shù)也最為成熟但制作成本很大,以致于它還不能被大量廣泛和普遍地使用。由于單晶硅一般采用鋼化玻璃以及防水樹脂進(jìn)行封裝,因此其堅(jiān)固耐用,使用壽命一般可達(dá)15年,最高可達(dá)25年。

單晶硅太陽(yáng)能電池是當(dāng)前開發(fā)得最快的一種太陽(yáng)能電池,它的構(gòu)造和生產(chǎn)工藝已定型,產(chǎn)品已廣泛用于空間和地面。這種太陽(yáng)能電池以高純的單晶硅棒為原料。為了降低生產(chǎn)成本,現(xiàn)在地面應(yīng)用的太陽(yáng)能電池等采用太陽(yáng)能級(jí)的單晶硅棒,材料性能指標(biāo)有所放寬。

(2)多晶硅太陽(yáng)能電池

多晶硅太陽(yáng)電池的制作工藝與單晶硅太陽(yáng)電池差不多,但是多晶硅太陽(yáng)能電池的光電轉(zhuǎn)換效率則要降低不少,其光電轉(zhuǎn)換效率約12%左右(2004年7月1日日本夏普上市效率為14.8%的世界最高效率多晶硅太陽(yáng)能電池)。從制作成本上來(lái)講,比單晶硅太陽(yáng)能電池要便宜一些,材料制造簡(jiǎn)便,節(jié)約電耗,總的生產(chǎn)成本較低,因此得到大量發(fā)展。此外,多晶硅太陽(yáng)能電池的使用壽命也要比單晶硅太陽(yáng)能電池短。

多晶硅太陽(yáng)能電池的生產(chǎn)需要消耗大量的高純硅材料,而制造這些材料工藝復(fù)雜,電耗很大,在太陽(yáng)能電池生產(chǎn)總成本中己超二分之一。加之拉制的單晶硅棒呈圓柱狀,切片制作太陽(yáng)能電池也是圓片,組成太陽(yáng)能組件平面利用率低。因此,80年代以來(lái),歐美一些國(guó)家投入了多晶硅太陽(yáng)能電池的研制。

(3)非晶體薄膜太陽(yáng)能電池

非晶硅薄膜太陽(yáng)能電池與單晶硅和多晶硅太陽(yáng)電池的制作方法完全不同,工藝過(guò)程大大簡(jiǎn)化,硅材料消耗很少,電耗更低,成本低重量輕,轉(zhuǎn)換效率較高,便于大規(guī)模生產(chǎn),它的主要優(yōu)點(diǎn)是在弱光條件也能發(fā)電,有極大的潛力。但非晶硅太陽(yáng)電池存在的主要問(wèn)題是光電轉(zhuǎn)換效率偏低,目前國(guó)際先進(jìn)水平為10%左右,且不夠穩(wěn)定,隨著時(shí)間的延長(zhǎng),其轉(zhuǎn)換效率衰減,直接影響了它的實(shí)際應(yīng)用。如果能進(jìn)一步解決穩(wěn)定性問(wèn)題及提高轉(zhuǎn)換率問(wèn)題,那么,非晶硅大陽(yáng)能電池?zé)o疑是太陽(yáng)能電池的主要發(fā)展產(chǎn)品之一。

2.多元化合物薄膜太陽(yáng)能電池

多元化合物薄膜太陽(yáng)能電池材料為無(wú)機(jī)鹽,其主要包括砷化鎵III-V族化合物、硫化鎘、硫化鎘及錮硒薄膜電池等。

硫化鎘、碲化鎘多晶薄膜電池的效率較非晶硅薄膜太陽(yáng)能電池效率高,成本較單晶硅電池低,并且也易于大規(guī)模生產(chǎn),但由于鎘有劇毒,會(huì)對(duì)環(huán)境造成嚴(yán)重的污染,因此,并不是晶體硅太陽(yáng)能電池最理想的替代產(chǎn)品。

砷化鎵(GaAs)III-V化合物電池的轉(zhuǎn)換效率可達(dá)28%,GaAs化合物材料具有十分理想的光學(xué)帶隙以及較高的吸收效率,抗輻照能力強(qiáng),對(duì)熱不敏感,適合于制造高效單結(jié)電池。但是GaAs材料的價(jià)格不菲,因而在很大程度上限制了用GaAs電池的普及。

銅銦硒薄膜電池(簡(jiǎn)稱CIS)適合光電轉(zhuǎn)換,不存在光致衰退問(wèn)題,轉(zhuǎn)換效率和多晶硅一樣。具有價(jià)格低廉、性能良好和工藝簡(jiǎn)單等優(yōu)點(diǎn),將成為今后發(fā)展太陽(yáng)能電池的一個(gè)重要方向。唯一的問(wèn)題是材料的來(lái)源,由于銦和硒都是比較稀有的元素,因此,這類電池的發(fā)展又必然受到限制。

3.聚合物多層修飾電極型太陽(yáng)能電池

在太陽(yáng)能電池中以聚合物代替無(wú)機(jī)材料是剛剛開始的一個(gè)太陽(yáng)能電池制爸的研究方向。其原理是利用不同氧化還原型聚合物的不同氧化還原電勢(shì),在導(dǎo)電材料(電極)表面進(jìn)行多層復(fù)合,制成類似無(wú)機(jī)P-N結(jié)的單向?qū)щ娧b置。其中一個(gè)電極的內(nèi)層由還原電位較低的聚合物修飾,外層聚合物的還原電位較高,電子轉(zhuǎn)移方向只能由內(nèi)層向外層轉(zhuǎn)移;另一個(gè)電極的修飾正好相反,并且第一個(gè)電極上兩種聚合物的還原電位均高于后者的兩種聚合物的還原電位。當(dāng)兩個(gè)修飾電極放入含有光敏化劑的電解波中時(shí)。光敏化劑吸光后產(chǎn)生的電子轉(zhuǎn)移到還原電位較低的電極上,還原電位較低電極上積累的電子不能向外層聚合物轉(zhuǎn)移,只能通過(guò)外電路通過(guò)還原電位較高的電極回到電解液,因此外電路中有光電流產(chǎn)生。

由于有機(jī)材料柔性好,制作容易,材料來(lái)源廣泛,成本底等優(yōu)勢(shì),從而對(duì)大規(guī)模利用太陽(yáng)能,提供廉價(jià)電能具有重要意義。但以有機(jī)材料制備太陽(yáng)能電池的研究?jī)H僅剛開始,不論是使用壽命,還是電池效率都不能和無(wú)機(jī)材料特別是硅電池相比。能否發(fā)展成為具有實(shí)用意義的產(chǎn)品,還有待于進(jìn)一步研究探索。

4.納米晶化學(xué)太陽(yáng)能電池

在太陽(yáng)能電池中硅系太陽(yáng)能電池?zé)o疑是發(fā)展最成熟的,但由于成本居高不下,遠(yuǎn)不能滿足大規(guī)模推廣應(yīng)用的要求。為此,人們一直不斷在工藝、新材料、電池薄膜化等方面進(jìn)行探索,而這當(dāng)中新近發(fā)展的納米TIO2晶體化學(xué)能太陽(yáng)能電池受到國(guó)內(nèi)外科學(xué)家的重視?!∽匀鹗縂ratzel教授研制成功納米TIO2化學(xué)大陽(yáng)能電池以來(lái),國(guó)內(nèi)一些單位也正在進(jìn)行這方面的研究。納米晶化學(xué)太陽(yáng)能電池(簡(jiǎn)稱NPC電池)是由一種在禁帶半導(dǎo)體材料修飾、組裝到另一種大能隙半導(dǎo)體材料上形成的,窄禁帶半導(dǎo)體材料采用過(guò)渡金屬Ru以及Os等的有機(jī)化合物敏化染料,大能隙半導(dǎo)體材料為納米多晶TIO2并制成電極,此外NPC電池還選用適當(dāng)?shù)难趸贿€原電解質(zhì)。納米晶TIO2工作原理:染料分子吸收太陽(yáng)光能躍遷到激發(fā)態(tài),激發(fā)態(tài)不穩(wěn)定,電子快速注入到緊鄰的TiO2導(dǎo)帶,染料中失去的電子則很快從電解質(zhì)中得到補(bǔ)償,進(jìn)入TiO2導(dǎo)帶中的電于最終進(jìn)入導(dǎo)電膜,然后通過(guò)外回路產(chǎn)生光電流。

太陽(yáng)能電池

【免責(zé)聲明】此文章僅供讀者作為參考,并請(qǐng)自行承擔(dān)全部責(zé)任。出于傳遞給讀者更多信息之目的,并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性。如轉(zhuǎn)載稿件涉及版權(quán)等問(wèn)題,請(qǐng)?jiān)趦芍軆?nèi)來(lái)電或來(lái)函與長(zhǎng)江有色金屬網(wǎng)聯(lián)系。